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Abstract

We propose an unsupervised inference
rules-based categorial grammar learning
method, which aims to simulate language
acquisition. The learner has been trained
and tested on an artificial language frag-
ment that contains both ambiguity and re-
cursion. We demonstrate that the learner
has 100% coverage with respect to the tar-
get grammar using a relatively small set
of initial assumptions. We also show that
our method is successful at two of the
celebrated problems of language acquisi-
tion literature: learning English auxiliary
fronting in polar interrogatives and En-
glish auxiliary word order.

1 Introduction

Grammatical inference is a field of machine learn-
ing that collects several methodologies and algo-
rithms to learn formal languages. These tech-
niques have been applied to learn language rep-
resentations in several domains as biological se-
quence data (Park, 2001), robotics (Zender et al.,
2008), and XML processing, among others. Be-
sides practical engineering oriented applications
of grammar inference in computational linguistics,
a salient application is the explanation of learning
natural language phenomena.

Children are able to acquire one or more lan-
guages to which they are exposed to without ex-
plicit instruction. Furthermore, poverty of stimu-
lus argument (Chomsky, 1980), claims that the in-
put received by children lacks critical information
necessary for learning languages. Nativist theo-
ries account for these phenomena assuming that
a large amount of language specific information
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is known innately by children. Empiricist theo-
ries, on the other hand, postulate general cognitive
mechanisms as the basis of language acquisition.

As it is well known in machine learning, there
is no single general purpose algorithm that can be
applied to all possible problems (commonly re-
ferred to as no free lunch theorem). The learning
process has to incorporate an initial inductive bias.
The nature of inductive bias in the setting of lan-
guage acquisition is not clear. Conceivably, the an-
swer to this question should eventually come from
neuroscience. However, as this does not seem to
be possible in the near future, computational mod-
els of language can provide an insight into the na-
ture of inductive bias needed for acquiring natural
languages. Consistent computational models can
indeed increase our understanding of the mecha-
nism that humans employ to learn and use lan-
guages (Lappin and Shieber, 2007), particularly
the mechanism involved in the acquisition of the
first language.

Two of the popular test examples used in sup-
port of the argument of poverty of stimulus (APS)
are the learning of auxiliary fronting in polar in-
terrogatives and auxiliary word order. In this pa-
per we show a computational learning method that
deals with these two phenomena and is able to
learn ambiguous and recursive artificial grammars.
The method presented in this work is based on
learning a categorial grammar.

Categorial Grammar (CG) is a lexicalized gram-
mar formalism with a high level of transparency
between syntax and semantics. These features
make CG an attractive formalism for computa-
tional studies of language acquisition. The lexi-
calized nature of the CG reduces learning syntax
to learning a lexicon, while the close connection
between syntax and semantics helps learning one
using the other.

One of the earliest studies of CG learners was
proposed by Buszkowski and Penn (1989). Their
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system used unification of type-schemes to deter-
mine categorial grammars from functor-argument
structures. Kanazawa (1998) extended this algo-
rithm and employed partial unification to learn
from strings of words. A number of studies
(e.g., Waldron (1999); Villavicencio (2002); But-
tery (2006)) followed similar approaches to learn
CG based grammars. Waldron (1999) used a
rule-based method to infer a CG from input la-
beled with basic syntactic types. Villavicencio
(2002) proposed a method that improves the per-
formance of Waldron’s system by describing an
unconventional universal grammar based on CG,
and using semantically annotated input. Watkin-
son and Manandhar (2000) presented an unsuper-
vised stochastic learner which aims to learn a com-
pact lexicon. They assumed that the set of possi-
ble categories are known, which maps the problem
of grammar induction to categorization. The sys-
tem achieved perfect accuracy in an artificial cor-
pus. However, its performance dropped to 73.2%
in lexicon accuracy and 28.5% in parsing accu-
racy when tested on the more realistic LLL corpus
(Kanazawa, 1998).

We propose an unsupervised method to learn
categorial grammars. The learner is provided with
a set of positive sentences generated by a tar-
get grammar. Unknown categories are learned by
applying a set of inference rules incrementally.
When there are multiple choices, a simple cate-
gory preference (SCP) principle that is inspired by
the minimum description length (MDL) principle
(Rissanen, 1989) is used to minimize the size of
the grammar. We show that the learner is able to
infer recursive and ambiguous grammars. More-
over, this method is capable of learning two well
known linguistic phenomena: English auxiliary
word order and English polar interrogatives. The
method learns both phenomena successfully from
a set of input sentences that are considered insuf-
ficient for these tasks.

The structure of this paper is as follows: Sec-
tion 2 gives a short introduction to CG. Section 3
describes our learning architecture. Section 4
presents three experiments followed by a discus-
sion of the results in Section 5. In the last section
we provide brief conclusions and address future
directions.
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Peter saw a book
NP (S\NPYNPNPN N
NP
S\NP
S

Figure 1: Example derivation for sentence Peter
saw a book.

2 Categorial Grammar

Categorial grammar (Ajdukiewicz (1935; Bar-
Hillel (1953)) is a lexicalized grammar formal-
ism. CG describes all the language specific syn-
tactic information inside the lexicon, leaving only
a small number of universal rules outside the lex-
We present a very brief introduction to
CG here; more comprehensive descriptions can be
found in Moortgat (2002) and Wood (1993).

Every word in a CG lexicon is assigned to a syn-
tactic category. A limited set of categories consti-
tutes the basic categories of the grammar. For ex-
ample, S (sentence), NP (noun phrase), N (noun)
are commonly assumed to be the basic categories
for English. Complex categories, such as NP/N,
S\NP and (S\NP)\(S\NP) are formed by com-
bining any two CG categories with a forward (/)
or backward (\) slash. Given the lexicon with cat-
egories of this form, the only rules of the CG are
given in (1). An example derivation can be seen in
Figure 1.

icon.

(1) Function application rules
Forward A/B B — A (>)
Backward B AAB —- A <)

CG as described above is weakly equivalent to
Context Free Grammars, and cannot model the
complexity of natural languages adequately. How-
ever, CG is powerful enough for the linguistic phe-
nomena presented here. It should be also noted
that there are extensions such as Combinatory
Categorial Grammar (CCG, (Steedman (2000);
Steedman and Baldridge (2005)) that provide nec-
essary descriptive and theoretical adequacy by in-
troducing additional operations. In this work, we
learn classical Categorial Grammars, while mak-
ing use of some of the CCG operations, namely
composition, type raising, and substitution, during
the learning process. The additional CCG opera-
tions used are given in (2).



(2) a. Function composition rules:
Forward A/B B/C — A/C (>B)
Backward B\C A\B — A\C (<B)

b. Type raising rules:

Forward A — T/(T\A) (T)

Backward A — T\(T/A) (<T)

c. Substitution rules:

Forward  (A/B)/C  B/C — A/C (>8)

Backward B\C (A\B)\C — A\C (<8)

3 Learning by Inference Rules

The learning method presented in this paper is a
rule-based unsupervised lexicalized grammar in-
ference system. The input to the system is a set of
grammatical sentences of the target language. The
system learns a CG lexicon containing words as-
signed to (possibly multiple) CG categories. The
set of lexical categories is not known in advance, it
is generated by a number of inference rules which
are the center of our learning algorithm.

In this section we first introduce a series of in-
ference rules used to perform grammar induction.
Then we will present the complete learning archi-
tecture along with an example demonstrating the
learning process.

3.1 Grammar Induction by Inference Rules

Our inference rules work when there is only one
unknown category in the input. Then a category
for the unknown word is proposed by the inference
rules. In the rule descriptions below, the letters A,
B, C and D represent known categories, X repre-
sents the unknown category.

(3) Level O inference rules:

B/A X — B = X=A ifA#S8S

X BA — B = X=A ifA£S
(4) Level I inference rules:

A X — B = X=B\A ifA#S

X A —- B = X=B/A ifA#S

We define level as the number of functioning
slash operators in a category. A slash operator
functions if it takes an argument. Consequently,
the basic categories are level 0. The category
S\ N P belongs to level 1. Note that the category
of adverbs (S\;NP)\(S\NNP) belongs to level
2. Although it has three slashes, only the slashes
marked with subscript ; are functioning, i.e. can
be used in a derivation.

Level 0 and level 1 inference rules can be suc-
cessfully used to learn the category of intransitive
verbs, such as slept in Peter slept. The condition
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if A # Sin (3) and (4), prevents learning a
large number of incorrect categories. For exam-
ple, S\ S for the word well from Peter slept well.
As stated before, the category of adverbs belongs
to level 2, so we need a level 2 inference rule to
learn this category.

(5) a. Level 2 side inference rules:
X A B - C = X=(C/B)/A
A B X —» C = X=(C\A\B

b. Level 2 middle inference rule:
A X B - C = X=(C\4)/B

Level 2 inference rules are divided into two
parts: the side rule and the middle rule, depending
on whether an unknown category is at the begin-
ning/end of a sentence or in the middle.

Notice that in (5b) the category (C/B)\A is
as viable as the inferred category (C\A)/B. In
(5b), and (6b) presented later, we pick the right-
combining rule.!

It might seem that using (5b) we can learn the
category of (S\S)/NP for the preposition with
from the sentence Peter slept with Mary. But this
will not happen: the level 2 inference rule is im-
plemented by recursively calling level O and level
1 inference rules, which all have the condition
if A # S to prevent generating the category
S\S. As a matter of fact, none of the level 0-2
rules could help learning the category of with from
the sentence Peter slept with Mary. So we need to
use a level 3 inference rule.

(6) a. Level 3 side inference rules:
X A B C — D = X=(D/C)/B)/A
A B C X — D = X=(DWA\B\C

b. Level 3 middle inference rules:
A X B C — D = X=(D\A4)/C)/B
A B X C — D = X=(D\WA\B)/C

3.2 The Learning Architecture

The learning framework consists of three parts:
the edge generator, the recursive learner and the
output selector. A schematic description of the
learning process is provided in Figure 2. Below we
provide a detailed description of the three parts,
along with demonstration of learning the ambigu-
ous and recursive category of with from the input
sentence given in Figure 3a.

"We realize that this is a rather arbitrary choice, and plan
to relax it in future work. For now, we assume that this is a
language specific choice learned before or during acquisition
of phenomena presented here.



saw
(SINP)INP

telescope
N

0 1 2 3 4 5 6 7
(a) Input string and index numbers. Note that the word with, marked as ‘X’ is unknown at
this point.

’ \ span \ rule used \ category H \ span \ rule used \ category ‘
11],1) >T S/(S\NP) || 6 | (0,3) >B S/N
21(0,2) >B S/NP 7 1 (1,4) > S\NP
31,3 >B (S\NP)/N || 8 | (2,4) <T S/(S\NP)
4124 > NP 9 (0,4 < S
51,7 > NP 10 | (0, 4) > S

(b) Generated edges in the chart.

A B X C
cat span cat span cat span || cat | span

1 NP O, ) || S\NP | (1,4 || (S\NP)\(S\NP)/NP | (4,5) | NP | (5,7)
2 [SIS\NP) | (0, 1) || S\NP | (1,4) || (S\NP)\(S\NP)/NP | (4,5) || NP | (5,7)
3 SINP | (0,2) NP 2,4 (NP\NP)/NP @5 [ NP | (5,7)
4SNP [(0,2) || SUS\NP) | (2.4) || (NP\(SAS\NP)))/NP | (4,5) || NP | (5,7)
5 SIN | (0,3) N (3, 4) (N\N)/NP @45) [ NP | (5,7)

(c) Categories learned from therule A B X C — D for the sentence in Figure 3a.

Figure 3: Example steps from the learning process.

The Edge Generator implements a variation

of the CYK algorithm (Cocke (1969); Younger

(1967); Kasami (1965)), which employs bottom-

up chart parsing. Every known word in a sen-

J tence is an edge in the chart. The edge genera-

Recursive tor then tries to merge any consecutive edges into

Corpus ’ Geii?:tor
" a single edge recursively. In order to produce as
many edges as possible, besides function applica-
I tion rules (>,<), we have also used the composi-
: tion (>B,<B), substitution (>S,<S) and the type
raising (>T,<T) rules. Figure 3b shows all possi-
ble edges generated for the example in Figure 3a.

The Recursive Learner performs grammar in-
duction by the rules given in Section 3.1. The
learning process first tries to learn from level O or
level 1 inference rules. If the unknown word can-
not be learned by level O or level 1 inference rules,
higher level rules are tried. Following simple cat-
egory preference principle, if a category can be in-
ferred with a lower level rule, we do not attempt to
use higher level rules.

0 and 1 inference
ule recursivel

Cannot learn

Output Selector
ﬁ

For the input in Figure 3a, the level 0 and level
1 inference rules are not enough. Only the level
3 middle inference rules (6b) can be applied. Fig-
ure 3c gives the list of all categories produced by

Figure 2: Learning process using inference rules.
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Peter :=NP with := (N\N)/NP

Mary :=NP with := (NP\NP)/NP

green =N/N  with := ((S\NP)\(S\NP))/NP
colorless :=N/N  sleep :=S\NP

book =N a := NP/N

telescope =N give := ((S\NP)/NP)/NP
the :=NP/N saw := (S\NP)/NP

run :=S\NP read := (S\NP)/NP

big :=N/N  furiously := (S\NP)\(S\NP)

Table 1: Target grammar rules.

this inference rule.

The Output Selector tests the learned cate-
gories produced by the recursive learner and se-
lects the ones that can be parsed using only func-
tion application rules. The categories that do not
produce a valid parse with function application
rules are discarded.

Not all rules in Table 3c are selected by output
selector. We first remove duplicate categories gen-
erated in the previous phase. The category in row
2 is removed, as it is the same as the category in
row 1. Furthermore, using only the function ap-
plication rules, the sentence cannot be parsed with
the category in row 4, so this category is discarded.
Rows 1, 3 and 5 provide the learned categories.

4 Experiments and Results

We conducted three experiments with our learning
system. In the first experiment, we tested the sys-
tem’s capabilities on an artificial language exhibit-
ing a certain level of ambiguity and recursion. The
second experiment tests model’s ability to learn
formation of English polar interrogative questions.
In the third experiment, we tried to learn the En-
glish auxiliary order, another well known problem
in language acquisition literature.

4.1 Experiment 1: Learning an Artificial
Grammar

For this experiment, we have created a small
English-like artificial grammar. The lexicalized
grammar that is used as the target grammar for
this experiment is listed in Table 1. The gram-
mar includes both recursive rules and ambiguity.
The input to the learner is generated by sampling
160 sentences that can be parsed using the target
grammar. The input to the learner consist only
of correct sentences. The input sentences are un-
labeled, except for nouns (/N) and proper names
(N P). The learner is expected to converge to the
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Peter saw Mary with a  big green telescope
NP (S\NP)/NP NP (NP\NP)NPNP/NN/N N/N N
N >
N >
NP
NP\NP -
NP
S\NP -
S
(2)
Peter  saw  Mary with a  big green telescope
NP (S\NP)/NP NP ((S\NP)\(S\NP)/NPNP/NN/N NN N
e —
N >
NP -

>

(S\NP)\(S\NP)
S\NP
S

(b)

Figure 4: Two ambiguous parses of the sentence
Peter saw Mary with a big green telescope.

target grammar.

After only a single pass through input sen-
tences, all categories in our target grammar pre-
sented in Table 1 are learned correctly. The
learned grammar is identical to the target gram-
mar.

4.2 Experiment 2: Learning Auxiliary Verb
Fronting

According to some theories of grammar, the En-
glish yes/no questions, such as (7b) are formed
by moving the auxiliary verb in the correspond-
ing declarative sentence (7a) to the beginning of
the sentence. But when the subject comes with
a relative clause, as in (7c), the auxiliary verb in
the main clause, not the one in the relative clause,
should be assigned the initial position (7d).

(7) a. Peter is awake.
Is Peter awake?
Peter who is sleepy is awake.

Is Peter who is sleepy awake?

o o T

*[s Peter who sleepy is awake?

Starting with Chomsky (1965), it is frequently
claimed that the input children receive during ac-
quisition contains utterances of the form (7a), (7b)
and (7¢), but not (7d). Under these conditions, ar-
guably, most plausible hypothesis to form the in-
terrogative questions is fronting the first auxiliary.
Even though this hypothesis generates sentences



like (7e), Crain and Nakayama (1987) showed
that children learn the more complicated ‘struc-
ture sensitive’ hypothesis. So, the nativist con-
clusion is that children must be making use of in-
nate knowledge that language is structure sensi-
tive. Together with many other APS claims, Pul-
lum and Scholz (2002) have shown that the as-
sumptions about the input were not right. Contrary
to the claim, the relevant evidence, i.e. questions
like (7d), was quite common in every corpus they
have looked in.

In this study, we follow an approach similar
to Clark and Eyraud (2006). We test our learner
assuming that the APS claims are correct. We
present our learner with the sentences of the form
(7a), (7b) and (7c), and test if it can learn to cor-
rectly recognize and generate interrogatives with
clauses. It should be noted that, our model is
based on a non-transformational theory of gram-
mar. Hence, the assumption that the question form
is formed by transformations is not entertained.
However, the learning problem is still valid: is it
possible to learn how to form and interpret the in-
terrogative questions without direct evidence pro-
vided in the data?

The experiment setting is the same as in experi-
ment 1. The only additional information provided
is the type of sentences, i.e. either given input is
a declarative sentence (S) or a question (S;). A
fragment of the learned categories for the auxiliary
verb is is given in (8). Figure 5 presents deriva-
tions of three sentences with the learned grammar.
(a), (b) and (c) in Figure 5 are not surprising. How-
ever the correct parse in (d) shows that a simple
learner can learn this type of constructions with-
out being exposed to the same type of data. On
the other hand, with all possible category assign-
ments provided by learned lexicon, it is impossi-
ble to parse the incorrect sentences like (7¢). Note
that the learning is achieved by assigning CG cat-
egories the words in the input using the inference
rules described in Section 3.1. The system learns
a lexicalized grammar which is consistent with the
inference rules.

Crucially, the learner does not make any explicit
structure dependence assumption. Since the same
categories can be assigned to the lexical items,
or a collection of consecutive lexical items during
derivation, the learned grammar can generate and
recognize the correct forms without making any
explicit assumptions about the sentence structure.
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Is
(S¢/(Saqj\NP)/NP NP S,4;\NP

Peter is sleepy Peter awake

NP (S\NP)/(S44;\NP) S5 \NP

S\NP S¢/(Saq;j\NP)
S S,
(a) (b)

Peter who is is awake
NP (NP\NP)/(S\NP) (S\NP)/(S14;\NP) S04 \NP (S\NP)/(S14; \NP) S, \NP
S\NP S\NP i
NP\NP

NP

sleepy

>

S
©

Is
(S4/(Sqq; \NP))/NP NP (NP\NP)/(S\NP) (S\NP)/(Sq4;\NP) S44;\NP S,4; \NP
S\NP

Peter who is sleepy awake

>

NP\NP
NP
Se/(Saq\NP)
S‘I

(d)

Figure 5: Derivations of the correct sentences in

).

Assigning correct categories to the input words is
enough for correctly producing and interpreting
previously unseen sentence forms.

(8) is := (S\NP)/(Saq; \NP)
Is := (S4/(Sagj\NP))/NP

4.3 Experiment 3: Learning Correct Word
Order

The difficulty of learning English auxiliary order
has also been used as a support for argument of
poverty of stimulus, and hence for linguistic na-
tivism. Introduced first by Kimball (1973), the
problem can be summarized as follows: the En-
glish auxiliary verbs should, have and be occur
exactly in this order and all of them are optional.
The claim is that while sentences containing a sin-
gle auxiliary (9a-9c) or two auxiliaries (9d-9f)
are present in the input, sequences of three aux-
iliaries (9g) are not ‘frequent enough’. Hence, it
is not possible to learn the correct three-auxiliary

sequence from the input alone.
(9) a. Ishould go.

I have gone.

I am going.

I have been going.

1 should have gone.

I should be going.

I should have been going.
*I have should been going.

PR -0 0o



should = (Ss\NP)/(S\NP)
should := (Ss\NP)/(Sp\INP)
should = (Ss\NP)/(Sp\N P)
have :=(Sp\NP)/(S\NP)
have = (Sp\NP)/(Sp\NP)
be =(S,\NP)/(S\NP)

Table 2: Categories of some auxiliary verbs.

I should have been going
NP (S\NP)/(S)\NP) (S:\NP)/(S\NP) (S\NP)/(S\NP) S\NP

S,\NP ”

>

SI\NP

>

SA\NP
S

Figure 6: Derivation of the correct word order.

The argument is controversial, and Pullum
and Scholz (2002) have shown that there are
more three-auxiliary sequences in the input than
claimed. In this study, we choose another method
to test the argument: we present our learner with
sentences containing only one or two auxiliaries
(as in (92-9f1)), and we test if it can correctly recog-
nize and generate sentences with three auxiliaries.
The setup is essentially the same as in experiment
2.

Table 2 presents a fragment of the learned gram-
mar. The derivation of the sentence (9g) using the
learned grammar is given in Figure 6. As can be
verified easily, the lexicalized grammar presented
in Table 2 would not allow sequences as in (9h).
The categories assigned to auxiliary verbs by the
learner completely, and correctly cover the En-
glish auxiliary order.?

Success of the learner is again due to its assign-
ment of words to syntactic categories. The cat-
egories induced from one- and two-auxiliary se-
quences in a logical way extend naturally to the
three-auxiliary sequences.

2An alternative approach would be assuming that the se-
quences like ‘should have been’ are learned as single units, at
least at the beginning of the learning process. Lexical items
spanning multiple input units are considered by some of the
related learners (e.g. Zettlemoyer and Collins (2005); Col-
tekin and Bozsahin (2007)). However, to be compatible with
the original claim, the learner presented in this paper assigns
categories to single input units.
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5 Discussion

We have presented a simple, unsupervised and
generalizable method to learn natural language
grammar. In this section, we will discuss these as-
pects of the system in the light of results presented
in the previous section.

The model presented here is simpler than many
alternatives. The CG rules used are based on a
simple consistent notion of function application
with sensitivity to spatio-temporal order. Learn-
ing proceeds by trying to classify the unknown
items in the input by using a series of logical in-
ference rules. The inference rules are simple and
even intuitive. Though there is no solid psycho-
logical evidence that children learn a grammar in
an inference-rule-based way, rule-based learning
seems to be one of the methods in children’s repos-
itory of learning methods starting as early as 7-
months after birth (Marcus et al., 1999). We do
not claim that rule-based learning is the only li-
able method, nor we claim that these rules are im-
plemented in children’s mind as we have done in a
computer program. However, the 100% correct re-
sults in parsing and generation by our model sug-
gests that it is sufficient to assume that children
use a small set of rules together with a plausible
inference procedure for learning the categories of
unknown words. The only other additional piece
in our learning algorithm is a preference towards
simpler categories.

One characteristic of our method is that it is un-
supervised. Raw text is fed to the learner without
any extra syntactic structure, semantic annotation
or negative evidence. The only additional cue we
provide is marking the basic classes of nouns, and
proper names. This can be justified on the grounds
that nouns are learned earlier than other categories
across the languages (Gentner, 1982). Arguably,
children may have already learned these classes
before acquiring the syntax of their language. Ad-
ditional information, such as semantically anno-
tated data is used in some of the related studies
(e.g. Villavicencio (2002); Buttery (2006)). We
have obtained good results from this unsupervised
learning process. Knowing that input to the chil-
dren is richer than raw text, if we give more hints
of the learning material to the learner, our learner
should get even better results in a more realistic
learning environment.

In this study, we do not make use of any sta-
tistical information present in the input. As in



some of the related studies (e.g. Clark and Eyraud
(2006)),? our non-statistical learner is adequate for
the purposes of demonstrating the learnability of
certain syntactic constructs. However, this results
in two important limitations of our learner as a
model of human language acquisition. First, it is
known that humans make use of statistical regular-
ities in the language for learning diverse linguis-
tic tasks (Saffran, 2003; Thompson and Newport,
2007). Second, natural language data is noisy, and
like any other rule-learner our algorithm is not able
to deal with noise. Even though these look dis-
couraging at first sight, it should be noted that it
is easily extendible to incorporate statistical learn-
ing methods, for example, by learning a stochastic
CG. We plan to improve the learning system in this
direction, which, as well as allowing the learner to
deal with noise in the input, would also allow us to
lift or relax some of the assumptions we have made
in this work. Others applied statistical methods to
CG induction experiments successfully (Osborne,
1997; Watkinson and Manandhar, 2000).

In this paper we demonstrated that a fragment
of the natural language syntax can be learned
with a simple unsupervised learning method. This
method performs well on learning two well-known
examples of difficult to learn syntactic phenom-
ena, namely the formation of English interroga-
tive questions, and English auxiliary order. These
phenomena are considered difficult to learn in the
absence of critical data. Provided exactly with the
type of data that was considered inadequate for the
task, the learner was still able to learn the phenom-
ena using only the simple mechanism described
above. Even if APS claims are correct, children
can still learn correct form with a simple inference
mechanism.

6 Conclusion

We described a method to learn categorial gram-
mars using inference rules of different levels ac-
cording to the number of functional operators
needed in the target category. Our method obtains
a coverage of 100% on the target grammar. We use
simple logical and intuitive inference rules to solve
the problem of unknown categories in the input.
The only additional aid provided to our learner is
the simple category preference. Using only this

3Unlike Clark and Eyraud (2006), our learner does not fo-
cus on learning a single phenomena but a complete grammar
of the input language. The underlying grammar formalism
also sets our study apart from theirs.
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set of initial assumptions, our system is also able
to learn two phenomena that have been considered
difficult to learn. As well as being able to recog-
nize and generate English interrogative sentences
with relative clauses without being exposed to the
same type of sentences, the learner is also able to
infer English auxiliary order correctly without be-
ing presented with all possible sequences. Our re-
sults demonstrate that a learner with simpler as-
sumptions than the ones commonly assumed in
the language acquisition literature is able to learn
some of the difficult constructions found in natural
language syntax. Putting aside the debate over the
existence of ceartain type of evidence in the lan-
guage acquisition process, our learner shows that
exact experience is not always important for learn-
ing: some simple but logical inference rules are
enough to help children deduce the correct syntac-
tic structures.

However, it is necessary to note that our system
has a number of limitations. First, these results
were obtained using data that was generated artifi-
cially. Second, since we do not use any statistical
rules, our system is not robust against noise. Us-
ing statistical patterns in the input language, it may
also be possible to relax some of the assumptions
presented here. These mark one direction in future
work: developing the algorithm further to make
use of statistical learning methods, and evaluating
it on real data.
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